Section 2.1 The Cartesian Coordinate System

Find the following on the rectangular coordinate system below: Origin, x-axis, y-axis, Quadrant I, Quadrant II, Quadrant III, Quadrant IV

What does it mean to solve the equation below?
$2 x+y=5$

How would you show all of the solutions to the equation $2 x+y=5$

Draw the graph of the equation $2 x+y=5$ to model all of the solutions to the equation.

Big Idea!!
The graph of any equation is the set of solutions to the equation.
-When you are asked to graph an equation then you are being asked to give a visual representation of the solutions to the equation.
-When you view a graph of an equation you are viewing the solutions to the equation.

Draw a rough sketch of the graph of the equation $\frac{1}{2} x^{2}-x-y=0$

Draw a rough sketch of the graph of the equation
$x^{2}+y^{2}-10 y=0$

Draw a rough sketch of the graph of the equation $x=3$

Find the distance between the two given points:

Distance Formula:
If point A has Cartesian coordinates $\left(x_{1}, y_{1}\right)$ and point B has Cartesian coordinates $\left(x_{2}, y_{2}\right)$ then the distance between point A and B is given by:

$$
\text { distance }=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Example:

Find the distance between the points whose Cartesian coordinates are $(3,-1)$ and $\left(2, \frac{5}{2}\right)$.

Find the midpoint of two given points:

Midpoint Formula:
If point A has Cartesian coordinates $\left(x_{1}, y_{1}\right)$ and point B has Cartesian coordinates $\left(x_{2}, y_{2}\right)$ then the midpoint is given by:

$$
\text { Midpoint }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example:

Find the midpoint of $(3,-1)$ and $\left(2, \frac{5}{2}\right)$.

